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ABSTRACT 
The purpose of this research project was to investigate, design, and implement new 
algebraic multigrid (AMG) algorithms to enable the effective use of AMG in large-
scale multiphysics simulation codes.  These problems are extremely large; storage 
requirements and excessive run-time make direct solvers infeasible.  The problems 
are highly ill-conditioned, so that existing iterative solvers either fail or converge 
very slowly.  While existing AMG algorithms have been shown to be robust and 
stable for a large class of problems, there are certain  problems of great interest to 
the Laboratory for which no effective algorithm existed prior to this research. 
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The research was primarily carried out in three main topic areas 1) the discovery and 
development of a family of methods based on new interpolation routines, called  
element-based algebraic multigrid; 2) innovative methods for devising coarse grids, 
including element agglomeration parallelization of advanced graph-theoretic 
methods; and  3) research into the application of novel smoothing methods. In the 
first area, the research resulted in the discovery and development of a family of 
methods based on a new heuristic describing an essential characteristic of AMG.  
These methods, AMGe, element-free and multilevel element-free AMGe, and 
spectral AMGe, all are based on discovering and characterizing the essential nature 
of smooth error components through the use of local, or neighborhood, matrices. The 
second area of research led to improved efficiency and effectiveness in the 
coarsening methods for BoomerAMG, the main AMG code developed by CASC, as 
well as to agglomeration-based methods for coarsening AMGe problems.  The last 
area was essential to making the methods converge optimally, or, for some 
problems, converge at all. 
 
The result of this research is a body of ideas, methods, algorithms, and codes that are 
steadily increasing both the effectiveness of CASC’s solvers on multiphysics 
simulation problems and the range of problems to which these solvers may be 
applied.  This research has had a demonstrable effect on the performance of at least 
two of the Laboratory’s large-scale simulation codes.  The wealth of ideas generated 
in this research will provide material for important further research for some time to 
come, research whose continuation has already found funding support from other 
venues.   
 

 
BACKGROUND 

Algebraic multigrid (AMG) has become one of the central areas of research in CASC.  Largely, 
this is because of our customers' increasing reliance on large, unstructured grids for their 
multiphysics simulation packages.  The sizes of many problems of interest to the 
Laboratory dictate that parallel methods of solution be employed, using hundreds or thousands of 
processors.  Such massively parallel efforts can only succeed if the algorithms they reply upon 
are scalable, meaning the run-time remains constant as both the number of processors and 
the problem size grow in tandem. 

 It is well-known that for structured-grid problems multigrid methods are among the most 
efficient solvers available.  More importantly, multigrid algorithms for many such problems are 
provably scalable, a theoretical fact that has been shown to be attainable in practice. Indeed, 
CASC has several structured-grid multigrid variants that are have proven particularly useful in 
large-scale simulations for precisely this reason [1]. However, these methods are not applicable 
to unstructured-grid problems, and for those, CASC has placed much emphasis on the 
development of AMG algorithms.  

AMG was first introduced in the early 1980's [2], and immediately attracted substantial 
interest [17] [18] [19]. Research continued sporadically through the late 1980's and early 1990's. 

2 



Henson et. al. 

Later, there was a resurgence of interest in both AMG and related algebraic-type multilevel 
methods  [23] [24]. This resurgence in AMG research is due to the need to solve increasingly 
larger systems, with hundreds of millions or billions of unknowns, on unstructured grids.  

At the time this project began, CASC had developed a parallel AMG code [11] [12], and was in 
the process of integrating it into the hypre library and thence into several of the applications 
codes of our customers.  Along the way, we had shown that AMG is both robust and 
algorithmically scalable for a large class of problems [6]. 

However, we had also discovered that there are certain classes of  problems for which AMG, as 
currently known, is insufficient  [8].  In fact, for some of  these problems no scalable, efficient 
solver was known.  For example, although AMG will work well for general elasticity problems  
posed on simple Cartesian meshes, such problems posed using finite  elements with very high 
aspect ratios cause AMG (and all other  sparse linear solvers) to converge very slowly.  
Similarly, extreme  thin-body elasticity problems also cause severe  difficulties. Problems 
involving contact surfaces and constraints are  also problematic, with no efficient solvers known.  
All of these  features, however, are of particular importance in the various  simulation packages 
under development around the Laboratory and the need  for an efficient solver for these 
problems is critical. 
 
The purpose of this LDRD project, then, was to discover new AMG algorithms to address the 
difficulties encountered in the large-scale multiphysics simulations, to develop these algorithms 
into codes that served as enabling technologies, allowing the application of the new algorithms 
to real world problems, and, finally, to assist and facilitate CASC scientists in the integration of 
these new methods into Laboratory simulation codes.  
  
 
TECHNICAL APPROACH 
 
We proposed solving these difficulties by researching and developing new types of AMG.  Our 
research fell into three broad categories: 1) the discovery and development of a family of 
methods based on new interpolation routines, called  element-based algebraic multigrid; 2) 
innovative methods for devising coarse grids, including element agglomeration parallelization of 
advanced graph-theoretic methods; and  3) research into the application of novel smoothing 
methods.  By far the majority of the effort was focused in area 1). These new methods require 
somewhat more advance information than traditional AMG, which requires only that the matrix 
representing the discretized differential operator be known. Specifically, these new element-
based algebraic multigrid methods, known as AMGe, element-free AMGe, multilevel element-
free AMGe, and spectral AMGe (denoted ρ AMGe) require that stiffness matrices for the 
individual finite elements be known as well. The original ideas underlying the AMGe work in 
this project were discovered by CASC researchers in concert with our University collaborators 
[4].  
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Multigrid Foundation   
Any multigrid algorithm works by recursive application of a two-grid method, which in turn 
rests on several simple facts. 1) Iterative relaxation schemes reduce the error initially, but stall. 
2) When the relaxation stalls, the error in the approximation is smooth. 3) Smooth error can be 
represented accurately on a coarse grid, with fewer gridpoints. Moreover, because there are 
fewer points, then we may solve for the error more efficiently on the coarse grid.  A basic 
multigrid algorithm uses these facts by recursively applying the two-grid scheme (h represents 
the fine grid, H the coarse grid): 
 

To solve , do until convergence: hhh fuA =
1. Smoothing:    .  ),,( hhhh fAuSu ←
2. Restrict residual:     . )( hhhH uAfRf −=

3. Solve the coarse problem:     ( ) HHH fA 1−
=e . 

4. Interpolate the correction:      . Hhh Peuu +←
5. Smoothing:    .  ),,( hhhh fAuSu ←

HAHere S is the smoothing, P is the interpolation, R is the restriction, and  is the coarse-grid 
operator. Applying recursion at step 3 produces the V-cycle, the fundamental multigrid 
algorithm. AMG uses precisely the same steps as just listed, and differs from conventional 
multigrid in that the coarse grids and associated interpolation, restriction, and coarse-grid 
operators are all determined automatically from algebraic considerations. 
 

Methods Derived From Element-Based Algebraic Multigrid (AMGe). 
AMGe: The first area of research was the development of AMGe, or element-based algebraic 
multigrid. Simply stated, AMGe is based on the discovery that by incorporating information 
available in the individual element stiffness matrices, it is possible to automatically determine 
the nature of the smooth error components. This information can then be used to create 
effective interpolation schemes to represent the errors, leading to effective multigrid cycling 
routines. Essentially, the fundamental idea underlying AMGe differs from conventional AMG in 
that where the conventional algorithm is guided by the heuristic that smooth error varies slowest 
in the direction of dependence, AMGe has as its guiding principle that the interpolation operator 
must have the “approximation property” that it can reproduce an eigenmode of the operator 
matrix with error proportional to the size of the associated eigenvalue. One reason this principle 
is of paramount importance in AMGe is that AMGe theory rests largely on the understanding 
that the eigenvectors of the operator associated with the smallest eigenvalues form a basis for the 
algebraically smooth error; hence it is essential that the coarse grids and interpolation operators 
accurately represent these important vectors. The heuristic guiding the conventional approach is 
grounded in purely algebraic reasoning, but is difficult to quantify accurately; the AMGe 
principle is derived directly from multigrid convergence theory and yields a calculable quantity, 
an approximation measure that can be used to describe the quality of the interpolation, the 
coarse-grid, and the accuracy of representation. 
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The approximation measure is given as follows [2]. Let R be an operator that “injects” a vector 
from the fine grid to the coarse grid and P be the interpolation operator mapping vectors from the 
coarse grid to the fine grid.  Letting QRP = , we can define the defect of interpolation as QI − . 
The approximation measure, M, for a given vector e, is  
 

( ) ( )
ee,A

ee, QIQI
M

−−
=  . 

 
Multigrid theory states that if M is bounded, over all vectors, then it can be used to determine an 
upper bound on the multigrid convergence factor [22]. It is easy to see that if e is an eigenvector 
of A associated with an extremely small eigenvalue, then the interpolation must be very accurate 
if M is to be bounded.  Indeed, if e is in the null space of the operator, then the interpolation must 
be exact! 
 
The approximation measure, however, requires global information- knowledge of the spectrum 
of the linear operator-  which is at least as difficult to obtain as the solution to the original 
problem itself. An important ingredient of AMGe [4] was the development of a local version of 

the approximation measure, in terms of the spectra of the individual 
element stiffness matrices, and to provide a link between the global 
convergence theory and the local approximation measure.  

Figure 1: The elements 
forming the neighborhood 
of the node i.  

 
We use AMGe to create, for a given set of coarse points, an 
interpolation operator that is “optimal” in terms of accuracy per unit 
effort. We define the neighborhood of the node i, at which we wish 
to interpolate, as the set of points in all elements having the node i 
as a vertex (Figure 1). The individual stiffness matrices for all 
elements in the neighborhood are assembled into a neighborhood 
matrix . We partition the neighborhood matrix into blocks, iA

 

 ff fc
i

cf cc

A A
A

A A
 

=  
 

 

 
where  is a block having all the interactions between the fine-grid points in the neighborhood 
and  is a block containing the interactions between the fine and coarse grid points in the 
neighborhood. The ith row of the interpolation operator is then given by the corresponding row 
of 

ffA

fcA

fcff AA 1)( −− . 
 

We call this method element interpolation.  We found that element interpolation, for certain 
problems (for example, 2-d thin-beam elasticity), can yield dramatic improvements in the 
convergence factor (the ratio of the size of the error at one step to the size of the error in the 
previous step), as shown in Figure 2 and Table 1.  
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d 

 
 
 
 
 
 
 
Figure 2: The geometry of the thin-beam elasticity problem, used to demonstrate the efficacy of 
the AMGe element interpolation method. 
 
 

Geometry Convergence Factors 
Beam 

Thickness, d 
Grid 

Spacing h 
AMG Standard 
Interpolation 

AMGe Element 
Interpolation 

1 
1/4 
1/8 
1/16 

1/32 
1/8 
1/16 
1/64 

0.60 
0.95 
0.90 
0.92 

0.20 
0.25 
0.26 
0.26 

 
Table 1: A comparison of the standard interpolation and element interpolation methods on the 
thin-beam elasticity problem. 
 
Element-Free AMGe: In the second year of the project we 
added a new area of emphasis, based on results of the first 
year’s investigation.  In the first year we determined that 
AMGe is indeed a more robust method than AMG, and that it 
may be applied to problems involving complicated grids 
featuring elements with bad aspect ratios and other 
troublesome features. Indeed, we had shown [4] that the 
AMGe method produces a superior interpolation operator, 
leading to a more robust solver. However, there remained the 
expense of storing and using the individual element stiffness 
matrices. Importantly, there are some problems (such as 
finite-difference codes) for which we do not have the stiffness 
matrices at our disposal.  
 
AMGe works by assembling a neighborhood matrix, 
consisting of the sum of the individual stiffness matrices for 
the elements having as a vertex the point at which the 
interpolation is desired.  For the element-free method we 
generate the neighborhood based on the graph of the matrix (see Figure 3).  We define three sets, 
the fine-grid points in the neighborhood, coarse-grid points in the neighborhood, and the 
exterior, or points that border the neighborhood. We develop the neighborhood matrix ( )fcff AA ˆ,ˆ , 

Figure 3: The graph of the matrix 
in the vicinity of node i (red dot). 
The blue dots are the fine-grid 
neighbors, the green squares the 
coarse-grid neighbors, and the 
purple dots are the points in the 
exterior.  
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where  gives the fine-to-fine connections and  gives the fine-to-coarse connections. The 
neighborhood matrix is defined by defined by the equation 

ffÂ

XfE

fcÂ

XfE E
  ( ) ( )

0
ˆ ˆ, , , 0ff fc ff fc fX

Xc

I
A A A A A I

 
 

=  
 
 

using  and ,  special harmonic extension operators that extend vectors defined on the 
exterior of the neighborhood points to the fine and coarse interior points. Then, as in AMGe, we 
obtain the ith row of the interpolation from the ith row of  .  

XcE

fcff AA ˆ)ˆ( 1−−
 
We implemented the element-free AMGe method into a serial code and tested it a number of 
problems [10], using several different choices for the extension operator. The results (see e.g., 
Table 2) indicate that on all except the most intractable problems it performs comparably to 
AMGe (and generally better than AMG), in terms of convergence and computational cost. 
Furthermore, it has the notable advantage that the storage and manipulation of the finite element 
stiffness matrices is not required.  
 

Method  Elliptic Thick Beam Thin Beam 
AMGe iterations 

conv. fact. 
23 

.289 
20 

.234 
19 

.220 
e-free A-extension iterations 

conv. fact 
20 

.247 
12 

.097 
22 

.280 
e-free L2-extension iterations 

conv. fact 
21 

.231 
13 

.104 
27 

.254 
 
Table 2. Selected results comparing the AMGe and element-free AMGe methods. Methods are 
used as a preconditioner to conjugate gradient.  Shown are the number of PCG iterations to 
achieve a specified tolerance on the residual norm and the final convergence factors. 
 
Multilevel Element-free AMGe: A fundamental observation to be made about AMGe is that a 
local calculation is performed on a small matrix (that is, an eigenvector decomposition of the 
neighborhood matrix), the purpose of which is to capture locally the global character of algebraic 
smoothness. Element-free AMGe mimics this by constructing local matrices artificially based on 
the graph of the matrix.  Actually capturing the global character of algebraic smoothness would 
be preferable, as it is the global problem that is to be ultimately solved; however, capturing the 
global character of the smoothness entails an eigenvalue decomposition of the global operator, 
requiring a computational effort at least equal to that of solving the original problem, and is 
clearly not feasible.  One branch of our research was to investigate whether the global 
characterization of the space of smooth vectors could be computed locally using a multilevel 
approach; that is, to compute local matrices on coarser and coarser grids and combine the 
spectral vectors on all levels, in much the same spirit as the multigrid algorithm itself proceeds. 
As a result of these investigations, the Multilevel Element-free AMGe method was devised.  The 
method was implemented and tested on several problems, and yielded very promising results.  
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The implementation is not computationally efficient, and therefore impractical in its current 
form; nonetheless, it remains an active area of research. 
 
Spectral AMGe: Every AMG algorithm depends on some concept of “smoothness.”  For 
example, classical AMG algorithms define smooth error as being characterized by small 
residual , . The AMGe family of methods is based on the concept that smooth error is 
characterized by small energy, < . Either of these assumptions work for many problem 
types; both break down in some situations. Early in our research, we concentrated on discovering 

an accurate characterization for the “smooth error” that must be eliminated by coarse-grid 
correction.  In geometric multigrid this is relatively straightforward; smoothness implies that the 
error is characterized by slow oscillation.  In the AMG setting, however, where grids are often 
unstructured and/or operators are complicated, we cannot rely on a physical “smoothness.” In 
this case, smooth error is defined as the error not eliminated by relaxation, and can only be 
ferreted out by its algebraic properties. Indeed, for some problems, algebraic smoothness does 
not appear physically smooth at all (see Figure 4). 

e
0≈Ae

0, >≈eAe

fcubuau xyyyxx =−−− )()(Figure 4: Algebraically smooth error for the problem  where a, b, and
c vary on the unit square as shown at left. 
 

a=1 
b=1 
c=0 

a=1000 
b=1 
c=2 

a=1 
b=1000 
c-0 

a=1 
b=1 
c=2 

 
In the second year of this research we discovered a method, known as spectral AMGe (and 
denoted ρ AMGe),  based on the principle that smooth error corresponds to the eigenvectors 
associated with the smallest eigenvalues of the operator matrix A. This fact has long been 
known, but characterizing the global eigenvectors of the operator matrix is a problem at least as 
difficult as solving the original problem fAx = . The new method method, based on a “local” 
characterization of smoothness, uses the eigenvectors corresponding to the small eigenvalues of 
the neighborhood matrix (assembled from the element stiffness matrices for the agglomerated 
elements).   
 
One important feature of this method is that we eliminate the requirement that the coarse-grid 
variables be subsets of the fine-grid variables; in this method the coarse-grid degrees of freedom 
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are coefficients of the eigenvectors themselves, which form the columns of the interpolation 
matrix. In this, spectral AMGe is more “algebraic” than the original AMGe. More importantly, 
this method relies on a simpler, more primitive characterization of smoothness, hence one that is 
less likely to break down.  To date the spectral AMGe  method, although expensive 
computationally, has proven to be one of the most robust AMG algorithms currently known. 
 
 
Parallel Coarse-grid Selection and Element Agglomeration. 
Element Agglomeration: One of challenges of the element-based methods (AMGe, ρ AMGe) 
is that even if the coarse gridpoints are known, we still must have coarse-grid “elements” and 
their associated stiffness matrices, in order to generate a multilevel algorithm.  Hence, we need 
an automatic way of determining the coarse elements.  We devised such a method. A form of 
element agglomeration, it creates the coarse-grid information in a two-step process. First, 
collecting the fine-grid elements having non-trivial intersections into agglomeration sets creates 
the agglomerated elements. Next, faces, edges, and vertices of the agglomerated elements are 
defined by algebraic abstraction of the properties of geometric elements. Specifically, to create 
the coarse-grid information two steps are proposed: 
 

1. Create the set of agglomerated elements {E} by collecting sets of fine-grid elements 
having non-trivial intersections into agglomeration sets. 

2. Define faces, edges, and vertices of the agglomerated elements by abstracting what 
happens with geometric elements, as  follows: 

a. Consider all intersections iE E j∩  for all pairs (i ,j) of agglomerated elements.  
An intersection of this type is a face, F, if it is not contained in any other 
intersection, that is, for any pair of indices other than (i, j). 

b. Consider all intersections of all pairs of faces iF Fj∩ . Such an intersection is 
called an edge, , if it is not contained in any other intersection of faces. Γ

c. Consider all intersections of all pairs of edges, i jΓ ∩ Γ .  Those intersections that 
are nonempty are called vertices. 

 
Armed with the elements, faces, edges, and vertices, the local interpolation operators can be 
constructed by application of an energy minimization principle [14]. The global interpolation 
operators can then be constructed from the local operators by an assembly process not unlike 
standard finite-element assembly into the operator matrices. That this is both possible and 
effective in certain special cases (where the appropriate coarsening and agglomeration is known, 
such as semi-coarsening for strongly anisotropic operators) has been shown in preliminary tests 
by Vassilevski and Jones [14]. Abstracting the ideas to the general situation, for highly 
unstructured grids, or problems where the gridpoint locations are themselves unknown (such as 
geodetic survey problems), and then applying it in an efficient code, was among the main goals 
of this project 
 
The algorithm was implemented in a sequential code and applied to general situations, e.g., for 
highly unstructured grids.  An example of a sequence of coarse grids generated by this method is 
given in Figure 5.  For each grid level, the individual elements are displayed as colored regions, 
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with different colors indicating different elements. This small problem (1600 elements on the 
fine grid) is illustrative; we have applied the method to much larger problems. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The sequence of coarse grids automatically selected by the element agglomeration 
method.  The finest grid (1600 elements) is at top left; the coarsest (1 element) is at bottom right.  
The fine-grid elements are displayed on all grids for comparative purposes. 
 
Parallel Coarse-grid Selection: As important as knowing how to agglomerate elements to 
produce the coarse-grid elements, however, is the problem of determining which points to choose 
as coarse-grid points and which elements to agglomerate. Although strongly related, the problem 
of finding a good coarse-grid can be independent of agglomeration.  We needed to develop 
effective parallel algorithms for selecting coarse-grid points, and then forming the coarse-grid 
elements based on these points. For BoomerAMG, we had implemented an algorithm based on 
the parallel independent-set algorithms of Luby, Jones, and Plassman [9, 15, 16], and found that 
while they are efficient from a parallel processing standpoint, they tended to result in poor 
coarsenings.  Much of our research [11, 12] focused largely on creating hybrid algorithms 
combining the features of the Luby-based method with quasi-parallel implementations of the 
standard AMG coarsening of [18].  This work resulted in considerable improvement of the 
implementation.  
 
For AMGe, we showed that we can use the element information to help select the coarse-grid 
points.  For example, the local approximation measure M can be used to determine which subset 
of coarse-grid points can best be used to interpolate a given fine-grid variable.  We have 
experimented with exhaustive-search methods using this principle [5], and have developed good, 
robust interpolations, however, these come at an unacceptably high computational cost.  While 
this approach has not yet proven to be practical, further research may enable us to devise a fast, 
effective algorithm for selecting coarse-grid points and/or elements based on the local 
approximation measure M. 
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Compatible Relaxation Coarsening: In a recent paper Brandt [3] elucidated a useful 
mechanism for determining the quality of a set of coarse-grid points.  In essence, the idea is that 
relaxation is initially performed only on the F-points, holding the values at the C-points fixed, 
and using a homogeneous right-hand side.  This relaxation method is called compatible 
relaxation.  Brandt showed that those regions of the grid for which compatible relaxation 
converges rapidly are adequately represented on the coarse grid.   Our research showed that, for 
element-based problems, compatible relaxation converges rapidly if and only if the AMGe 
measure M is small, giving us a strong relationship between the method of compatible relaxation, 
and its associated theory, and the theory and practice of AMGe and ρ AMGe.  We have adapted 
the idea of compatible relaxation into the basis of a coarsening scheme, which appears as 
follows. 
 
Compatible relaxation-based coarsening algorithm: 

1. Initialize U = Ω , the set of all points on the grid.  Set C = ∅ .  Choose a threshold value 
θ . 

2. While U , do ≠ ∅
a. Perform υ  sweeps of compatible relaxation  

b. Set : x
x

υ

υU i θ−1

 
= > 

 
 

c. Choose S = {an independent set of points in U} 
d. Set C C  ,S F C= ∪ = Ω −

 
We implemented this algorithm in several test codes, as well as the BoomerAMG code, and 
conducted “proof of principal” tests for a limited set of problems.  
 
Research into Smoothing Methods:  
Classical AMG methods are generally based on Gauss-Seidel smoothing, in which each equation 
of the system is solved for the unknown associated with it, holding all other unknowns fixed at 
their most recent value.  This method is inherently sequential, and therefore not amenable to 
parallelization. Another alternative is the Jacobi method, which follows the same premise except 
that new values for all unknowns are computed before any of these new values are applied.  
Jacobi, unlike Gauss-Seidel, is readily parallelizable.  However, Jacobi-based methods are 
provably much slower than those using Gauss-Seidel; worse, our research demonstrated that as 
the problem size increases, the Jacobi-based method slows down, rendering it unscalable.  
 
We expended a significant effort in the research of smoothing techniques in an effort to 
overcome these problems.  Our standard method is a hybrid approach, that utilizes Gauss-Seidel 
iterations on the interior of each processor domain and a Jacobi-like parallel update on the 
processor boundaries.  While performing better than simple Jacobi, this method is not robust, 
leading us to carefully examine alternatives, such as specially weighted hybrid methods and 
parallel multiplicative and additive Schwarz smoothers. 
 
 

RESEARCH RESULTS 
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Over the three years of this project, we made substantial progress on the research topics 
described above.  The nature of this project was to produce algorithms and prototypes;  it was 
never intended that finished production codes would result.  Rather, the idea was to prove up the 
concepts and discoveries into testable codes that could then be developed using other funding.  
By that measure we have been quite successful.  Some of the ideas originally discovered in the 
course of the collaborative effort of this project have been developed, completed, and 
implemented in production code under the aegis of the Scalable Linear Solvers project, using 
ASCI, DNT, or SciDAC funding. Examples of this include the hybrid Jacobi/Gauss-Seidel and 
Schwarz smoothers, as well as the hybrid classical-AMG/graph-theoretic and compatible 
relaxation based coarsening schemes.  Many of the other results were implemented in codes and 
tested on suites of problems, but are not yet implemented in production codes.  Examples of this 
include the element-free and multilevel element-free AMGe methods and the spectral AMGe 
algorithm.  These methods and codes are currently undergoing parallelization, development, and 
implementation into production codes, as appropriate, by the Scalable Linear Solvers team. 
 
Still, it is important to note that some of the results of this research have had a significant and 
positive impact on several of the Laboratory simulation codes.  Many of the improvements to the 
BoomerAMG code in CASC’s hypre library of preconditioners are direct results of this research, 
for example the smoothing and coarsening methods described above.  The hypre library has been 
implemented successfully in the ARIES, ALE3D, and Kull simulation codes, among others.  It 
has been used successfully on problems involving well over a thousand processors and several 
millions of unknowns.  
 
Below is a list of some of the accomplishments attained either completely or in significant part 
as a result of this research: 

• We  implemented a multilevel element-agglomeration code, in C, using a data structure 
for storing element stiffness matrices that maps easily to the Finite Element Interface (the 
FEI was developed as part of the ASCI Problem Solving Environment effort).  

• We devised and implemented an algorithm that selects the coarse-grid by applying an 
“approximation measure with penalty” approach.  

• We devised and implemented an efficient, improved parallel coarse-grid selection for 
BoomerAMG, to replace the original algorithm. This resulted in several algorithms, 
including both parallel implementations of the classic Ruge-Stüben algorithm as well as 
the so-called Falgout algorithm, a hybrid of the parallel Cleary-Luby-Jones-Plassman 
and Ruge-Stüben algorithms. 

• The element-free AMGe approach was discovered. This was a classic example of 
serendipitous discovery; it was not one of our original goals, but arose during research 
discussions with our CASC and university colleagues.   After its discovery, the perfection 
and theoretical background of this approach became an important part of the research 
effort of this project. 

• We implemented the full multilevel element-free AMGe method in a serial code. This 
code is scheduled for parallelization at a later date. 
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• We implemented the element-agglomeration based AMGe method into a full multilevel 
serial code (this was an original milestone for FY2001, but was completed early, in 
FY2000).  This code is currently being parallelized as part of the SciDAC effort. 

• We integrated BoomerAMG into two of the Laboratory’s major parallel simulation codes 
(ALE3D and Kull). It remains in common use in those codes, and has been described as 
“the workhorse preconditioner” by a member of the Kull code group. 

• We created a “systems” version of BoomerAMG, suitable for handling problems with 
coupled systems of PDEs (this capability has also been built into AMGe and element-free 
AMGe). 

• We developed a test suite of problems for developing AMGe codes. This suite 
encompasses various PDE's (particularly diffusion and elasticity problems) on various 
grids- both structured and unstructured. 

• We determined the “best” element agglomeration strategy.  A robust agglomeration 
algorithm was been implemented. 

• We devised and implemented several improved smoothers for the BoomerAMG code, 
including hybrid Jacobi/Gauss-Seidel and overlapping-Schwarz domain-decomposition-
like smoothers. These were implemented and shown to be robust for certain difficult 
problems. 

• We discovered the ρ AMGe approach. This, like element-free AMGe, was a 
serendipitous discovery made in collaboration with the CASC-University of Colorado 
AMG research team.  It became a major component of the research effort in the third year 
of the project. 

• Leveraging the efforts of the CASC Nonlinear Solvers and Differential Equations Project 
(under the direction of Dr. Carol S. Woodward), we cooperatively devised and  
implemented the element-agglomeration based AMGe method into a nonlinear solver 
(for a nonlinear diffusion problem) based on the Full Approximation Scheme (FAS). 

 
 
 

IMPACT OF THIS RESEARCH PROJECT ON THE LABORATORY.  
 
The driving force behind this proposal was the need to develop new, efficient solvers for real-
world simulations featuring the thin-body elasticity, constraint equations, slide-surfaces, high-
aspect ratio elements, or highly unstructured grids that render more conventional techniques 
essentially ineffective.  This research is at the leading edge of AMG technology, and therefore 
enjoys a very high profile both at the Laboratory and in the larger community of experts in linear 
solvers.  It has immediate applicability to high-profile codes.  The project has solidified the 
status of CASC, and therefore LLNL,  as a leader in computational mathematics and 
computational simulations for physics. 
 
As noted above, some of the results of our research has been implemented into the Laboratory 
codes ALE3D and Kull. The parallel AMG code BoomerAMG, incorporating numerous 
algorithms developed in this project, has been described as a “workhorse” preconditioner in the 
Kull code. We have demonstrated scalability of the Kull code, with BoomerAMG preconditioned 
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GMRES as the linear solver, on a structured-grid diffusion problem with 9.2 million unknowns 
on 1500 processors of the ASCI Blue machine, for similarly sized problems on the Frost 
machine, and for an unstructured-grid 2.3 million zone problem using 1500 processors. 
BoomerAMG is also installed in codes for gravitational potential calculations in unstructured-
grid astrophysical simulations. 
 
BoomerAMG has also been integrated into the ALE3D code. At the end of the second year of 
this work, we conducted  tests on certain ALE3D problems that demonstrate a strong potential 
for success.  For example, on a small spherical-shell problem (35K unknowns) on four 
processors, we can compare the number of iterations and time required to solve the problem 
using conjugate-gradient (CG), BoomerAMG, and preconditioned CG solvers (where we 
compare BoomerAMG and ParaSails as the preconditioner).  

 
Solver Iterations Time (sec) 

CG 1238 99 
BoomerAMG 178 196 

BoomerAMG-CG 35 44 
ParaSails-CG 770 113 

Table 3. Comparison of iteration counts and solution times (in seconds) of four methods 
on an ALE3D test matrix. 

 
It is evident from Table 3 that BoomerAMG, used as a preconditioner to CG, is more effective 
than the other methods tested for solving this problem.  
 
Since that time, BoomerAMG has been tested more fully in ALE3D.  It has been successfully 
been used for production-type problems up to about 2 million zones in size (about six million 
unknowns).  Problems larger than that had remained problematic through the end of the project.  
Quite recently, however, in the follow-on research of the SciDAC project, one of the new hybrid 
smoothers developed in this project has been employed.  Findings remain very preliminary, but 
there is reason to believe that with appropriate tuning of the smoother parameters BoomerAMG 
is successful on problems significantly larger than before (we have one successful test using 
some 4 million zones and just over 12 million unknowns), holding out the promise that we may 
be able to successfully apply it to some of the truly intractable problems facing the ALE3D code 
group.   
 
We also conducted tests of a more generic nature, to demonstrate the scalability and 
effectiveness of our research for various classes of problems.  For example, we considered the 
family of nonsymmetric variable-convection problems fuuucuuu xyxzzyyxx =+++−−− )(  
where the parameter c varies throughout the domain. There are 64K unknowns per processor on 
these structured-grid problems. The problem is grown by refinement in each of the three 
coordinate directions; hence, the number of processors grows as the cube of successive integers. 
In Table 4 we compare the solution times (in seconds) and number of iterations required for the 
BoomerAMG, GMRES, and BiCGSTAB methods. As is evident from the results in the table, our 
research has produced algorithms that are more effective, and more scalable, than other methods 
on these types of problems. 
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 Processors  1 8 27 64 125 216 343 512 
BoomerAMG Time  

# Iter. 
8 
5 

19 
7 

23 
7 

28 
9 

34 
8 

37 
9 

46 
8 

57 
9 

GMRES Time 
# Iter. 

25 
143 

60 
273 

92 
398 

135 
534 

168 
642 

210 
793 

263 
842 

359 
1046 

BiCGSTAB Time 
# Iter. 

17 
77 

41 
144 

67 
226 

100 
323 

117 
367 

188 
493 

187 
500 

317 
644 

 
Table 4. Comparison of BoomerAMG, GMRES, and BiCGSTAB, giving time to solution 
(in seconds) and iteration counts for each method. 

  
 
TECHNICAL OUTPUT OF THE PROJECT   
 
Publicly communicated results of our research effort include the following papers and 
presentations.  Sixteen of the invited presentations were delivered in Europe, underscoring the 
fact that this project has placed CASC in the forefront of worldwide research into algebraic 
multilevel methods.  
 
Papers: 

• Chartier, T., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, 
S. F., Ruge, J. W., and P. S. Vassilevski, Spectral Agglomeration AMGe, in preparation. 

• Henson, V. E., Kraus, J. K., and Vassilevski, P. S., Computing Interpolation Weights in 
AMG based on Multilevel Schur Complements, in preparation. 

• Chartier, T., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, 
S. F., Ruge, J. W., and P. S. Vassilevski, Spectral AMGe ( ρ AMGe), to appear in SIAM 
Journal on Scientific Computing, accepted 2002. 

• Henson, V. E., and U. M. Yang, BoomerAMG: a Parallel Algebraic Multigrid Solver and 
Preconditioner, Applied Numerical Mathematics, vol. 41, pp. 155-177, 2002.  

• Jones, J. E., and P. S. Vassilevski, AMGe based on element agglomeration, SIAM 
Journal on Scientific Computing, vol. 23, pp. 109-133, 2001. 

• Henson, V. E., and P. S. Vassilevski, Element-free AMGe: General algorithms for 
computing interpolation weights, SIAM Journal on Scientific Computing, vol. 23, pp. 
629-650, 2001. 

• Brezina, M., A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. 
F. McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation 
(AMGe), SIAM Journal on Scientific Computing, Vol. 22, No. 5, pp. 1570-1592, 2000.  

• Cleary, A. J., R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. 
McCormick, G. N. Miranda, and J. W. Ruge, Robustness and scalability of algebraic 
multigrid, SIAM Journal on Scientific Computing,  vol. 21, no. 5, pp 1886-1908, April, 
2000. 

15 



New Directions for Algebraic Multigrid 

• Brezina, M., A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. 
F. McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation 
(AMGe), SIAM Journal on Scientific Computing, vol. 22, no. 5, pp. 1570-1592, 2000.  

 
Presentations (speaker on multiauthored presentations indicated by *): 

 
• Koley. T., Pasciak, J., and *Vassilevski, P. S., Algebraic construction of mortar 

multiplier spaces with application to parallel AMGe, Seventh European Multigrid 
Conference, Hohenwart Forum, October 7--10, 2002 

• Vassilevski, P. S., Spectral Agglomerate AMGe for Unstructured Finite Element Elliptic 
Problems, invited plenary talk , Conference on Challenges in Scientific Computing, 
CISC 2002, Berlin, October 2--5, 2002. 

• Vassilevski, P. S., Algebraic Unstructured Finite Element Computations, invited plenary 
talk, Numerical Methods and Applications, NMA’02, Borovets, Bulgaria, August 21, 
2002 

• Henson, V. E., The State of Algebraic multigrid Research: where did we come form, 
where are we now, and where are we going? invited plenary talk, Householder 
Symposium XV, Peebles, Scotland, June 19, 2002 

• Henson, V. E., Multigrid and Algebraic Multigrid Methods for Solving PDEs 
Numerically: an Overview, invited seminar, Department of Petroleum Engineering, 
Stanford University, June 4, 2002  

• Henson, V. E., Algebraic Multigrid Research: why we are where we are, and where (the 
heck) are we going? invited seminar talk, Pennsylvania State University, November 9, 
2001  

• Vassilevski, P. S., Sparse matrix element topology with application to algebraic 
multigrid,  Invited presentation, PRISM 2001: Conference on Preconditioned Robust 
Iterative Solution Methods for Problems with Singularities,  University of Nijmegen,  
Nijmegen, The Netherlands, May 21-13, 2001 

• Henson, V. E., Algebraic multigrid preconditioning: who, what, when, how, and why, 
invited plenary presentation, 2001 International Conference On Preconditioning 
Techniques For Large Sparse Matrix Problems In Industrial Applications, Tahoe City, 
CA, April 29-May 1, 2001 

• Falgout, R. D., New Advances in Algebraic Multigrid, 
• invited seminar, Purdue University, Indiana, April 17, 2002 
• invited seminar, University of Colorado, Boulder, Colorado, September 11, 

2001 
• invited talk, Johannes Keppler University, Linz, Austria, May 25, 2001 
• invited seminar, Universität Bonn, Bonn, Germany, May 22, 2001 
• invited talk, German national Institute for Information Technology (GMD), 

Sankt Augustin, Germany, May 21, 2001  
• invited talk, Oberwolfach Conference, Oberwolfach, Germany, May, 2001 
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• *Jones, J. E., Vassilevski, P. S., and Woodward, C. S., Computational Issues in the 
Application of Nonlinear Multigrid to Nonlinear Diffusion Problems, Tenth Copper 
Mountain Conference on Multigrid Methods, Copper Mountain, CO, April 1-6, 2001 

• Yang, U. M., On the use of Schwarz smoothing in AMG, Tenth Copper Mountain 
Conference on Multigrid Methods, Copper Mountain, CO, April 1-6, 2001. 

• Vassilevski, P. S., Spectral-element agglomerate coarsening in AMGe, invited seminar, 
Texas A & M University, College Station, TX, December 6, 2000 

• Vassilevski, P. S., Spectral-element agglomerate coarsening in AMGe, invited seminar, 
University of Colorado at Boulder, Boulder, CO, November 7, 2000 

• Yang, U. M., BoomerAMG: a Parallel Algebraic Multigrid Solver, invited seminar at 
the GMD (German National Research Center), St. Augustin, Germany, August 28, 2000 

• Henson, V. E., and  U. M. *Yang, Experiences with BoomerAMG: a Parallel Algebraic 
Multigrid Solver and Preconditioner for Large Linear Systems, invited presentation, 
16th IMACS World Congress on Scientific Computation, Modeling and Applied 
Mathematics, Lausanne, Switzerland, August 21-25, 2000 

• Yang, U. M., Parallel Algebraic Multigrid Methods,  
• invited seminar, Central Institute of Applied Mathematics , Research Centre 

Juelich (FZJ), Germany, August 29, 2000 
• invited seminar, Bonn University,  Bonn, Germany, August 18, 2000 

• Henson, V. E., and Vassilevski, P. S., Element-Free AMGe: General Algorithms for 
Computing Interpolation Weights, 

• invited presentation, YES 2000: Yosemite Education Symposium on 
Advanced Multiscale and Multiresolution Methods, Yosemite National Park, 
CA, October 30-November 1, 2000. 

• invited seminar, University of Heidelberg, Heidelberg, Germany, July 4, 2000 
• invited seminar, Universität Bonn, Bonn, Germany, June 30, 2000 
• invited seminar, Workshop on Algebraic Multigrid, Sankt Wolfgang, Austria, 

June 27, 2000 
• Falgout, R. D., Parallel Algebraic Multigrid for Finite Elements (AMGe), invited 

presentation, Seminar, Pennsylvania State University, February 18, 2000 
• Vassilevski, P.S., AMGe (Algebraic multigrid) for finite element problems,  

• invited presentation, Advanced Summer School Workshop, Pennsylvania 
State University, June 20, 2000 

• invited presentation, Colloquium talk, University of California at San Diego, 
February 17, 2000 

• invited presentation, Numerical Analysis Seminar, Texas A&M University, 
College Station, TX, January 12, 2000 
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THE PRINCIPAL INVESTIGATOR AND THE RESEARCH TEAM 
Principal Investigator. Dr. Van Emden Henson is a computational Mathematician at CASC and 
the Group Leader for the Scalable Algorithms Group.  He is recognized as an expert in multigrid 
methods, and has concentrated on AMG in recent years. He is one of the original developers of 
BoomerAMG.  Dr. Henson's research interests include multigrid methods, image reconstruction 
from projections, and discrete Fourier transforms. He is a coauthor of two books, The DFT: an 
owner's manual for the discrete Fourier transform, and A Multigrid Tutorial, 2nd Edition. Prior 
to joining CASC Dr. Henson spent seven years as an Assistant Professor of Mathematics at the 
Naval Postgraduate School in Monterey, California.  He earned his PhD in Applied Mathematics 
from the University of Colorado at Denver in 1990, following a decade as an Exploration 
Geophysicist with Cities Service Oil & Gas Corporation and Occidental Petroleum. 
 
Co-investigators. Dr. Panayot Vassilevski, a computational mathematician, joined CASC in 
1998. He earned his PhD in Mathematics from University of Sofia, Bulgaria, in 1984.  He is an 
expert on numerical PDEs, both discretization and solution methods, particularly multilevel 
iterative methods, hierarchical basis and multigrid, and domain decomposition methods. He also 
has expertise in more traditional preconditioning methods such as incomplete (block) 
factorization methods.  Prior to joining CASC/LLNL he was an Associate Professor at the 
Bulgarian Academy of Sciences, and has been a visiting Associate Professor at several 
Universities: UCLA (1991-1993), Texas A & M (Spring 1996), Bowling Green State University 
(Spring 1997), and the University of California at San Diego (Winter 1998).  He is a member of 
the editorial board of the SIAM Journal of Numerical Analysis and Associate Editor of the 
Journal of Numerical Linear Algebra with Applications. Dr. Ulrike Meier Yang is a computer 
scientist who joined CASC in 1998.  She earned her PhD in  Computer Science from the 
University of Illinois at Urbana-Champaign in 1995.  Dr. Yang is an expert on supercomputing, 
parallel computing, Krylov methods, and preconditioned iterative solvers. Prior to joining CASC 
she worked as a Senior Computer Scientist at the Center for Supercomputing Research and 
Development at the University of Illinois at Urbana-Champaign and also as a Computer Scientist 
at KFAJuelich GmbH, in Germany.   
 
 
In-House Collaborations. CASC has the nation's largest group of multigrid researchers.  Several 
served in a collaboratory role in this project.  In particular, we relied on advice, ideas, and 
assistance from Dr. Jim E. Jones on AMGe and element-agglomeration topics, Dr. Robert D. 
Falgout on parallel multigrid and parallel AMG techniques, Dr. Charles Tong on smoothed 
aggregation algebraic multigrid and Krylov methods, and Dr. Andrew Cleary on parallel 
coarsening methods.  Drs. Tong, Dr. Edmond Chow and Dr. David Stevens were instrumental 
as liaisons to the ALE3D code group, while Dr. Michael Lambert performed a similar function 
for the Kull code group.   
 
External Collaborations. We maintained several strategic, long-term alliances with colleagues in 
academia, a number of whom contributed to this research effort.  Most important among these is 
our alliance with researchers from the University of Colorado, including Dr. Thomas A. 
Manteuffel, Dr. Stephen F. McCormick, Dr. Marian Brezina, and Dr. Timothy Chartier 
(now at the University of Washington), as well as Dr. John W. Ruge of Front Range Scientific 
Computations, Inc.  All of these scientists are experts in multigrid and AMG; indeed, Drs. 
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McCormick and Ruge are among the founders of that field. In addition, we established 
collaborations with Dr. Craig C. Douglas, of the University of Kentucky, and Dr. Kyle 
Gallivan, of Florida State University. Dr. Douglas is a well-known expert in multigrid methods 
and in advanced scientific computing, and is emphasizing cache-based algorithms. Dr. Gallivan 
is an expert on performance analysis and enhancement of high-performance computers.  
 
Subcontracts. Some portions of this research were performed by external contractors.  
Specifically, subcontracts funded by this research project were awarded to Dr. John Ruge of 
Front Range Scientific Computations, Inc., and Dr. Marian Brezina of the University of 
Colorado, who together examined some details regarding the implementation and effectiveness 
of AMGe, Dr. Timothy Chartier of the University of Washington, who implemented and 
extended our research into ρ AMGe,  and Dr. Todd Coffey of North Carolina State University, 
who examined the use of AMGe and element agglomeration for nonlinear problems. 
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